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Abstract

This article presents a novel Stochastic Automata Networks (SAN) model to estimate the behavior of
sediment strata formation in continental margins resulting from interaction between sea level, sediment
input and subsidence over the last 130 million years. The model result is a set of probabilities that can
be compared with geological facts and hypothesis; thus, we can point out possible discrepancies from other
similar works and also improve the chance of a good estimation of past geological events.
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1 Indroduction

The present study describes a novel application of Stochastic Automata Networks

(SAN) [1,2,3] to model a specific type of geological phenomenon. This is a chal-

lenging subject, provided that most of the natural phenomena depend on a great

number of factors to explain their evolution. Due to such a large number of natural

variables, one of the most important steps in the modeling activity is the selection,

discretization and grouping of the most significant variables to the phenomenon

considered.
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This study shows a first attempt to represent the evolution of a sedimentary

basin using the SAN formalism. Pelotas basin, located in southernmost Brazil

(Figure 1), was the basin chosen to attend this purpose. Considerable amounts of

information are available for this marginal basin, including stratigraphic architec-

ture (Figure 2), changes in sediment yield, and subsidence. Most of the information

from Pelotas basin used in this paper is extracted from Contreras et al. [4].

Fig. 1. Location of Pelotas basin in southern Brazil, and seismic line analyzed by Contreras et al., [4].

Fig. 2. Interpreted seismic reflection profile from Pelotas basin [4]. In seismic reflection surveys, the
measurement of the time required for a seismic wave or pulse to return to the surface after reflection from
subsurface interfaces of different physical properties provides information on the arrangement of sedimentary
strata. Color lines depict reflectors from different ages. Vertical exaggeration 8:1.

This article is organized as follows: Section 2 provides the necessary background
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on the geological phenomena, favouring the model comprehension; Section 3 con-

cisely describes the SAN formalism; Section 4 is dedicated to describing the proposed

SAN model for Pelotas basin; Section 5 presents the experiment conducted and the

results achieved; and Section 6 is dedicated to discuss the model and confront the

results with the expected from geological standpoint.

2 Geology Background

Sedimentary basins constitute large accumulations of sediments. The amounts and

types of sediments depend on factors such as climate and relief, and for this reason,

sedimentary basins constitute essential records of the climatic and tectonic history

of the Earth.

The study of sedimentary basins is primarily based on drilling and seismic sur-

veys, which provide information on the composition and arrangement of sedimentary

rock strata. The configuration of strata results from the interplay between sediment

supply and relative base level changes, which defines the accommodation space for

those sediments. In marginal sedimentary basins, i.e., basins along a continental

margin, the base level is determined by the relative sea level, which, in turn de-

pends on the global (eustatic) sea level changes and on the vertical movement of

the underlying crust (Figure 3). Crustal movement can be either upwards (uplift)

or downwards (subsidence).

Four genetic types of deposit can be distinguished as a function of relative sea

level changes, as summarized in Figure 4 (a). These are named forced regression

(FR), lowstand normal regression (LNR), highstand normal regression (HNR), and

transgression (T ). Forced regressions occur whenever relative sea level falls. During

these events, sediments prograde seawards and the shoreline advances with down-

stepping (Figure 4 (b)). Normal regressions occur whenever sea level is rising but

sedimentation rate outpaces the rate of sea-level rise, avoiding shoreline retreat.

Normal regressions may either occur during a relative sea level lowstand or high-

stand. During lowstands, there is an acceleration of sea level rise and the rate

of progradation decreases with time while the rate of vertical accretion (known as

aggradation) increases with time (Figure 4 (c)). Conversely, as sea level decelerates

at the end of a sea-level rise trend, there is a decrease in the rate of aggradation

with time and an increase in progradation (Figure 4 (c)). Finally, transgressions

occur when the rate of sea level rise is the highest and the sediment supply is not

enough to compensate for it. During transgressions, the shoreline retreats as the

sea advances over the continent and sediments accumulate progressively landwards,

in a configuration known as retrogradation (Figure 4 (d)).

Clearly, the simplified model in Figure 4 does not represent the whole complexity

of processes that may affect the configuration of sedimentary strata such as variable

sediment supply and shelf gradient. Nevertheless, it emphasizes the dominant role

of relative-sea level changes and provides a clear picture of the main processes and

possible stratigraphic architectures.

Contreras et al. [4] estimated subsidence rates and sediment flux using numer-
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Fig. 3. Rate of relative sea level change and addition of new accommodation space as a function of eustatic
(global) sea level changes and subsidence [5].

ical modeling (Figure 5). These estimates were obtained considering the eustatic

(global) sea level curve proposed by Hardenbol et al. [8] re-calibrated to a more

recent geological timescale [9], as plotted in Figure 6. Higher order, i.e., higher

frequency, sea-level changes were excluded from the analysis because of the lower

resolution of the seismo-stratigraphic data (2nd order depositional units, 3-50 Ma),

their less defined amplitudes and partly disputed eustatic origin [10].

3 Stochastic Automata Networks

When a stochastic process has many states its representation by an ordinary Markov

chain may be confuse or difficult to handle. In such cases, the use of a structured

formalism as, for instance, Stochastic Automata Networks (SAN) [1,3] may cope the

problem.

A first step when using SAN as a modeling tool is to identify structures within

the process. Each structure is treated as an automaton, composed of states and tran-

sitions. Every single transition is ruled by one or more events, which are classified

as local or synchronizing. A local event operates over only one automaton, chang-

ing its state by triggering a transition without interfering on the other automata
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Fig. 4. Genetic types of stratal stacking patterns as a function of changes in relative sea level. In (a),
sediment supply is assumed to be constant, as pointed by the shaded green area. The upper curve corre-
sponds to base-level (sea-level changes) and the lower curve corresponds to the rate of sea-level change. The
corresponding arrangement of strata for forced regression, normal regression (both lowstand and highstand)
and transgression are depicted respectively in (b), (c), and (d). Adapted from [6,7].

of the network. A synchronizing event operates over n ≥ 2 automata, triggering

n simultaneous transitions, one per automaton. Each event in a SAN model has

an occurrence rate, which can be constant or a function of other automata current

states. Also, for each possible transition of a same event there is a choice or routing

probability. Again, the event routing probability can be constant or functional.

A SAN model is defined by itsMarkovian descriptor, a compact algebraic expres-

sion composed of tensor operations over the matrices representing each automaton

on the network. This compact representation of SAN enables memory savings, since

storing some small matrices (of the order of each automaton) requires less memory

usage than storing the infinitesimal generator itself. In addition, the tensor format

of SAN enables the use of specialized algorithms [2,12,13,14] which are more efficient
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Fig. 5. Estimates of subsidence and sediment input rates for the past 130 Ma for Pelotas basin based on
numerical modeling. Reproduced from [4].

Fig. 6. Second order eustatic sea-level curve from Hardenbol et al. [11], re-calibrated according to Grad-
stein et al. [9] geologic timescale as proposed by Contreras [10].

than those used for solving large Markov chains.

For readers interested in further details on SAN, such as the formalism origin, im-

provements, classical and generalized tensor algebra, besides the material already re-

ferred, the following works are suggested [15,3,16]. Those interested in further mod-

eling examples using SAN can find extensive material in [17,18,19,20,21,22,23,24].

3.1 Example: Heads or Tails

Heads or Tails is a coin-tossing game with a series of known variations. The one

presented here has one coin and one player. At each coin flip, the player must guess

which side will come with the face up. The player wins whenever his expectation is

confirmed, otherwise he loses.

Figure 7 presents a possible SAN model for this problem. It has two automata:

one representing the player’s guess (automaton P), which is either heads or tails ;

and the other representing a tossing engine (automaton C ), which is capable of

tossing the coin and computing the outcome.

Automaton P has two states: “H ” and “T”. Routing probabilities πPH and

πPT indicate the player guesses, being the probability of choosing heads and tails,
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Fig. 7. Heads or Tails – SAN Modeling.

respectively. Automaton C has four states: “H ” and “T”, indicating the actual

result of the coin-tossing; “PW ” (player wins) for the case the result matches the

player’s guess and “PL” (player loses) otherwise. The coin has probabilities πCH

and πCT of coming with the heads or tails side up, respectively, as the toss result.

The coin-tossing and the player’s guess are simultaneous, represented by a syn-

chronizing event, e, which triggers transitions leading to “H ” or “T” in both au-

tomata. Such event can only happen when each automaton is in condition to attend

it, which means automaton C must be either in “PW ” or “PL”.

As soon as the synchronizing event e happens, it follows a verification of whether

the player has won or lost the match. Depending on the result, either of the local

events on automaton C is triggered: event “lW” leads to state “PW ” (player wins),

while event “lL” leads to state “PL” (player loses).

4 SAN Model for the Pelotas Basin Strata Configura-
tion

This section presents a SAN model developed for predicting the types of stratal

stacking patterns expected for Pelotas Basin along the past 130 Ma.

As seen on Section 2, there are four types of deposit respectively associated to

forced regression (FR), lowstand normal regression (LNR), highstand normal re-

gression (HNR) and transgression (T ). The first one occurs whenever the relative

sea level falls. The other three distinguish from one another by the relative con-

tribution of relative sea level rise rate and sediment supply rate. Note that the

relative sea level is a function of the global (eustatic) sea level and crustal vertical

movement. In our study case, there is no uplift and all the vertical movement is

downwards, i.e. subsidence.

In this scenario it is possible to identify four important measures as the starting

point for modeling, corresponding to the variation rates of: (1) eustatic sea level

(ESL); (2) subsidence (S ); (3) relative sea level (RSL); and (4) sediment supply

(SS ). Each of these four measures corresponds to one automaton in Figure 8, whose

states were conceived based on a cluster of values achieved by Contreras et al. [4].

This figure also presents one automaton for time tracking and four other automata

for restricting the model behavior. The model complete description is given by

Figure 8 together with Table 4 and Table 3, being the first table the one responsible

for providing the automata semantics and the last for listing the events and their
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Fig. 8. Pelotas Basin - Automata of the SAN Model.

Figure 8 highlights the set of starting states in this model. Note that Chronos

= C130 is the starting point in time. It represents the time period between 130 Ma
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Table 1
The semantic of automata of the proposed model.

ESL Automaton indicating changes in the global (eustatic) sea level rate. State
“S” stands for “standard”, states “H” stand for “high” and states “L” stand
for “low”, such that the rate rises in accordance with the sequence {L3 . . . H3}.

S Automaton indicating changes in the subsidence rate. States “H” stand for
“high”, such that the rate rises in accordance with the sequence {H1 . . . H4}.

RSL Automaton indicating changes in the local (relative) sea level rate. State “S”
stands for “standard”, states “H” stand for “high” and state “L” stands for
“low”, such that the rate rises in accordance with the sequence {L . . .H3}.

SS Automaton indicating changes in the sediment supply rate. State “S” stands
for “standard”, states “H” stand for “high” and states “L” stand for “low”,
such that the value rises in accordance with the sequence {L2 . . . H2}.

Chronos Automaton indicating this study timeline, from 130 million years ago to
present time. States “C” stand for “Chronos”.

M (ESL) Associated to automaton ESL, this automaton works as a semaphore, en-
abling ESL to change its state. State “DM” stands for “don’t move” and
states “M” stand for “move”, such that the number of steps to move is given
by the state index. For example: M2 indicates two steps.

M (S) Associated to automaton S, this automaton works as a semaphore, enabling
S to change its state. State “DM” stands for “don’t move” and state “M”
stands for “move one step forward”.

M (RSL) Associated to automaton RSL. This automaton works as a semaphore, en-
abling RSL to change its state. State “DM” stands for “don’t move” and
states “M” stand for “move”, such that the number of steps to move is given
by the state index. For example: M2 indicates two steps.

M (SS) Associated to automaton SS, this automaton works as a semaphore, enabling
SS to change its state. State “DM” stands for “don’t move” and states “M”
stand for “move”, such that the number of steps to move is given by the state
index. For example: M2 indicates two steps.

and 127 Ma, which comprises a time interval of 3 Ma. The state C130 is followed

by the state C127, such that the frequency associated to this transition is of one

departure every 3 Ma, which corresponds to the rate of this event: e130,127 = 0.3333

(see Table 3). State C127 comprises the period between 127 Ma and 124 Ma, giving

an event rate of e127,124 = 0.3333, coincidentially the same as before. State C124

comprises the period between 124 Ma and 118 Ma, with an event rate of e124,118 =

0.1667, that is, the state C124 is left in a proportion of one departure every 6 Ma.

Additionally, each event of time passage (events of automaton Chronos) triggers

synchronous transitions on automata M (ESL), M (S), M (RSL) and M (SS). In order

to favor clarity, the M automata have the transitions leaving the DM states labeled

by groupings (first column of Table 3). For instance, label m
(ESL)
0 is used to refer

to transitions in automaton ESL due to any of these events: e118,113, e91,90, e51,48,

e17,15, rst.

At Table 3, event e130,127 is assigned to labels m
(ESL)
3 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 .

Looking for these labels in the M automata one comprehends that the transition

from C130 to C127 happens simultaneously to the transitions leading from DM toM3

in automaton M (ESL), leading back to DM in automaton M (S), to M1 in automaton

M (RSL) and leading back to DM in automaton M (SS).

In this new configuration, after synchronous transitions in Chronos and the M

automata have taken place, only two kinds of events are possible: the up and down

events. These events are also synchronizing ones, such that transitions in automaton

M (XYZ ) are accompanied by transitions in automaton XYZ (where XYZ refers to

the automata ESL, S, RSL and SS ), in the sense that the up events lead to higher
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Table 2
The events and their rates for the proposed model.

Label Event Rate Type

m
(ESL)
3 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e130,127 0.3333 sync

m
(ESL)
0 , m

(S)
1 , m

(RSL)
0 , m

(SS)
1 e51,48 0.3333 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
4 , m

(SS)
0 e127,124 0.3333 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
1 , m

(SS)
0 e48,40 0.1250 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
1 e124,118 0.1667 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
2 , m

(SS)
3 e40,37 0.3333 sync

m
(ESL)
0 , m

(S)
1 , m

(RSL)
2 , m

(SS)
1 e118,113 0.2000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
2 e37,33 0.2500 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e113,110 0.3333 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e33,31 0.5000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
2 , m

(SS)
0 e110,108 0.5000 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
2 , m

(SS)
0 e31,29 0.5000 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
2 , m

(SS)
0 e108,98 0.1000 sync

m
(ESL)
3 , m

(S)
1 , m

(RSL)
1 , m

(SS)
0 e29,28 1.0000 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
0 , m

(SS)
0 e98,95 0.3333 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
0 , m

(SS)
1 e28,27 1.0000 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e95,91 0.2500 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e27,24 0.3333 sync

m
(ESL)
0 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e91,90 1.0000 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
1 , m

(SS)
2 e24,22 0.5000 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
1 , m

(SS)
1 e90,85 0.2000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
2 , m

(SS)
0 e22,17 0.2000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e85,84 1.0000 sync

m
(ESL)
0 , m

(S)
0 , m

(RSL)
1 , m

(SS)
1 e17,15 0.5000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e84,77 0.1429 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e15,14 1.0000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e77,75 0.5000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
3 , m

(SS)
0 e14,11 0.3333 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e75,65 0.1000 sync

m
(ESL)
1 , m

(S)
1 , m

(RSL)
3 , m

(SS)
2 e11,10 1.0000 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e65,56 0.1111 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e10,6 0.2500 sync

m
(ESL)
2 , m

(S)
0 , m

(RSL)
1 , m

(SS)
0 e56,52 0.2500 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 e6,5 1.0000 sync

m
(ESL)
1 , m

(S)
0 , m

(RSL)
2 , m

(SS)
0 e52,51 1.0000 Type

m
(ESL)
0 , m

(S)
0 , m

(RSL)
0 , m

(SS)
0 rst 0.2000 sync

Event Rate Type Event Rate Type

up1 fup1 sync down1 fdown1
sync

up2 fup2 sync down2 fdown2
sync

up3 fup3
sync down3 fdown3

sync

up4 fup4 sync down4 fdown4
sync

rates 4 in the XYZ automaton, while the down events force the rate to low down.

Although both kinds of events are predicted in the model, it is expected that only

one per automaton is enabled at a moment. The functions enabling and disabling

the up and down events are the fupx and fdownx functions (where x assumes an index

4 Note that automata ESL, S, RSL, SS are composed of states representing rates of the physical phenomena
modeled. These rates are unrelated to the rates of the events themselves.
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Table 3
The events and their rates for the proposed model (cont’d).

fup1
= ( (st Chronos == C6) || (st Chronos == C11) || (st Chronos == C22) ||

(st Chronos == C24) || (st Chronos == C27) || (st Chronos == C29) ||
(st Chronos == C37) || (st Chronos == C40) || (st Chronos == C56) ||
(st Chronos == C65) || (st Chronos == C84) || (st Chronos == C85) ||
(st Chronos == C95) || (st Chronos == C108) || (st Chronos == C110) ||
(st Chronos == C118) ) ∗ 1000

fdown1
= ( (st Chronos == C5) || (st Chronos == C10) || (st Chronos == C14) ||

(st Chronos == C17) || (st Chronos == C28) || (st Chronos == C31) ||
(st Chronos == C33) || (st Chronos == C51) || (st Chronos == C52) ||
(st Chronos == C75) || (st Chronos == C77) || (st Chronos == C91) ||
(st Chronos == C98) || (st Chronos == C124) || (st Chronos == C127) ) ∗ 1000

fup2
= ( (st Chronos == C10) || (st Chronos == C28) || (st Chronos == C40) ||

(st Chronos == C48) || (st Chronos == C113) ) ∗ 1000

fdown2
= ( (st Chronos == C22) || (st Chronos == C85) || (st Chronos == C95) ||

(st Chronos == C124) ) ∗ 1000

fup3
= ( (st Chronos == C11) || (st Chronos == C15) || (st Chronos == C27) ||

(st Chronos == C29) || (st Chronos == C33) || (st Chronos == C40) ||
(st Chronos == C51) || (st Chronos == C65) || (st Chronos == C85) ||
(st Chronos == C90) || (st Chronos == C110) || (st Chronos == C113) ||
(st Chronos == C118) ) ∗ 1000

fdown3
= ( (st Chronos == C10) || (st Chronos == C17) || (st Chronos == C22) ||

(st Chronos == C28) || (st Chronos == C31) || (st Chronos == C37) ||
(st Chronos == C52) || (st Chronos == C75) || (st Chronos == C77) ||
(st Chronos == C98) || (st Chronos == C108) || (st Chronos == C124) ) ∗ 1000

fup4 = ( (st Chronos == C10) || (st Chronos == C15) || (st Chronos == C27) ||
(st Chronos == C37) || (st Chronos == C48) || (st Chronos == C118) ) ∗ 1000

fdown4
= ( (st Chronos == C22) || (st Chronos == C33) || (st Chronos == C85) ||

(st Chronos == C113) ) ∗ 1000

in the set x = {1, 2, 3, 4}), which depend only on the Chronos current state. Some

tests were executed in order to choose a rate for the up and down events and, as

observed, setting these events rate to arround 1000 fits better to the results expected

from Contreras et al. [4]. The transitions only cease when every M automaton reach

state DM, disabling the up and down events and enabling once again the next event

synchronizing a transition in Chronos with a transition in each of the M automata.

Event rst, a short for reset, is the only one in the whole model that synchro-

nizes transitions between all the automata, restoring the model to its starting point

configuration, back in 130 Ma.

5 Experiment and Results

It is usual to conduct a modeling activity in order to obtain probability measures

for some given reality. In this study, the measures of interest are obtained by means

of integration functions, which are mathematical expressions for selecting the exact

information to inspect.

Here, the integration functions represent the four types of deposit or configura-

tion strata: T, FR, LNR and HNR, as discussed in Section 2. These types of deposit

are strongly dependent on the relative sea level rate and the sediment supply rate,

represented respectively by the automata RSL and SS (see Figure 8). Direct de-
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pendencies on the eustatic (global) sea level and subsidence, automata ESL and S,

respectively, are subtle but yet taken into account, since they bring more realism to

the model.

All possible configurations previously described are combined in order to build

one function per configuration strata per Chronos state. As an example to be

generalized to other states of Chronos, Table 4 presents the integration functions

built for state C130.

Table 4
Integration functions for the Pelotas Basin model, considering state C130.

T C130 = ((st Chronos == C130) &&

( ((st RSL == H3) && ((st SS == L1) ‖ (st SS == L2))) ‖
((st RSL == H2) && (st SS == L2)) ‖
((st RSL == H1) && (st SS == L2))

));

HNR C130 = ((st Chronos == C130) && (fdown3
) &&

( ((st RSL == H1) && (st SS == H2)) ‖
((st RSL == S) && (st SS == H2)) ‖
((st RSL == S) && (st SS == H1))

));

LNR C130 = ((st Chronos == C130) && (fup3 ) &&

( ((st RSL == H1) && (st SS == H2)) ‖
((st RSL == S) && (st SS == H2)) ‖
((st RSL == S) && (st SS == H1))

));

FR C130 = ((st Chronos == C130) && (st RSL == L1));

Considering the distribution of configuration strata along the past 130 Ma ob-

tained by this modeling activity, the goal of this experiment is to validate the model

by comparing the achieved results with those presented by Contreras et al. [4]. Fur-

thermore, the way this model was developed, it is possible to predict the probability

of each type of deposit within the same Chronos state.

Then, summarizing, there are basically four different types of deposit, as dis-

cussed in Section 2: forced regression (FR), lowstand normal regression (LNR),

highstand normal regression (HNR) and transgression (T ). Table 5 confronts infor-

mation on these stratal patterns obtained by Contreras et al. [4] with the results

achieved by the SAN model for Pelotas Basin (see Figure 8, Table 4 and Table 3).

Observing Table 5 in detail, the first three columns respectively present the time

period in millions of years, the relative sea level rate and the sediment supply rate.

The fourth column presents Contreras et al. [4] estimates based on the interpretation

of the sedimentary record. Under the “probabilities” grouping are the columns

displaying the probabilities obtained by solving the SAN model for Pelotas Basin.

In order to ease the analysis, the last column in this table provides a quick summary

on this experiment expectations. Signal † indicates a mismatch between the estimate

and the result obtained by solving the model with the specified integration functions

(as an example, see Table 4); signal � indicates a match.

Important to mention that among the existing tools for solving SAN mod-
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Table 5
Expected and Achieved Results

time relative sediment Contreras probabilities

period sea level supply et al. match

(Ma) rate rate 2010 T HNR LNR FR

130 - 127 77 18000 1.0000 0.0000 0.0000 0.0000

127 - 124 62 18000 1.0000 0.0000 0.0000 0.0000

124 - 118 54 18000 0.0005 0.0001 0.0000 0.9994

118 - 113 55 20000 0.0000 0.7339 0.2660 0.0001

113 - 110 67 14500 0.9996 0.0000 0.0004 0.0000

110 - 108 70 14500 T 1.0000 0.0000 0.0000 0.0000 �
108 - 98 73 14500 T 1.0000 0.0000 0.0000 0.0000 �
98 - 95 63 14500 0.0003 0.0002 0.0000 0.9995

95 - 91 64 14500 0.0000 0.0000 0.0000 1.0000

91 - 90 43 14500 0.0000 0.0000 0.0000 1.0000

90 - 85 43 17000 0.0000 0.0000 0.9997 0.0003

85 - 84 40 5000 0.9995 0.0000 0.0005 0.0000

84 - 77 43 5000 T 1.0000 0.0000 0.0000 0.0000 �
77 - 75 36 5000 0.0012 0.9998 0.0000 0.0000

75 - 65 26 5000 0.0000 0.0000 0.0000 1.0000

65 - 56 30 8500 0.0000 0.0000 0.9997 0.0003

56 - 52 48 8500 FR 0.0000 0.0000 1.0000 0.0000 †
52 - 51 40 8500 0.0000 0.0004 0.0000 0.9996

51 - 48 41 8500 T 0.9995 0.0000 0.0001 0.0003 �
48 - 40 53 19000 T 1.0000 0.0000 0.0000 0.0000 �
40 - 37 65 19000 1.0000 0.0000 0.0000 0.0000

37 - 33 74 36000 HNR 0.0003 0.9997 0.0000 0.0000 �
33 - 31 75 21000 LNR 0.7993 0.0000 0.2007 0.0000 †
31 - 29 63 21000 0.0005 0.9995 0.0000 0.0000

29 - 28 72 21000 0.9997 0.0000 0.0021 0.0000

28 - 27 49 21000 T 0.8000 0.2000 0.0000 0.0000 �
27 - 24 73 25000 0.6000 0.0000 0.4000 0.0000

24 - 22 81 25000 HNR 0.4001 0.5999 0.0000 0.0000 �
22 - 17 79 17000 0.9998 0.0002 0.0000 0.0000

17 - 15 75 17000 0.0005 0.0003 0.0000 0.9992

15 - 14 70 22000 LNR 0.0000 0.0000 0.9987 0.0013 �
14 - 11 61 22000 0.0000 0.0000 1.0000 0.0000

11 - 10 75 22000 T 0.9990 0.0000 0.0010 0.0000 �
10 - 6 74 41000 0.0003 0.9997 0.0000 0.0000

6 - 5 90 41000 0.0000 1.0000 0.0000 0.0000

5 - 0 82 41000 HNR 0.0000 0.0000 1.0000 0.0000 †

T Transgression � Match between the model result

FR Forced Regression and Contreras et al. 2010

LNR Lowstand Normal Regression † Mismatch between the model result

HNR Highstand Normal Regression and Contreras et al. 2010

els [25,26], SAN Lite-Solver [27] was the one chosen for this research. The time

required for solving the model presented in this paper (see Figure 8, Table 4 and

Table 3) is not really significant, the order of a few seconds, being irrelevant for this

paper analysis.
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6 Discussion

This article presents a novel modeling case to represent specific geological phenom-

ena. More precisely, this paper seeks for predicting generic types of stratal stacking

patterns for Pelotas Basin. The major goal here is to illustrate a potentially use-

ful and previously unknown prediction tool to estimate statistics about a natural

phenomenon.

As seen in Table 5, the values obtained by the experiment (columns under the

“probabilities” grouping) were relatively close to the Contreras et al. [4] classifica-

tion. Ten out of the thirteen time intervals defined by Contreras matched exactly.

The observed discrepancies were expected in the sense that this is a humble (but

not least interesting) first attempt on using SAN modeling in a knowledge area

as complex as geology, with too many factors to consider. These discrepancies

are particularly interesting given that geological prediction approaches are usually

based on a very different kind of research following punctual and restrictive analysis,

such as drilling and seismic surveys, instead of a systematic approach brought by a

stochastic modeling effort.

The three values that did not match may be explained by factors such as the

granularity of the model compared with the timescale of the geological events con-

sidered. In the case of the mismatch for the time period comprised between 56 and

52 Ma, when Contreras et al. attribute a FR and our model predicts a LNR, we

see that for the immediately following time period (52-51 Ma) we do expect a FR

with 99.96% confidence. Note that 1 Ma is the minor time slice that we consider.

The discrepancy in the 5-0 Ma time slot seems similar, since the model prediction

for the 6-5 Ma time slot is the HNR situation estimated by Contreras et al. [4].

However, our prediction is a clear LNR situation (100%). Therefore, it is our belief

that a granularity issue is causing the discrepancy as for the 56-52 Ma case. The

last mismatch was found in the 33-31 Ma time slot. In this case our model returns

probabilities of nearly 20% for LNR and 80% for TR, even though Contreras’ pre-

diction clearly state a LNR situation. Maybe this discrepancy is related to a lack

of detail in the model, but a further geological study is necessary to analyze the

reasons of this case.

We believe that this paper research is valuable not only by the subject itself, but

also by the challenge it represents. It is always difficult to work in a multidisciplinary

endeavor, where collaborators must learn how to communicate. Thus, the natural

next step in this research is to refine this model, enriching with data from alternative

literature allied to the knowledge obtained from this preliminary work.

Nevertheless, the proposed model represents a contribution by itself, since it

offers unusual complex modeling primitives as the automata M (ESL), M (S), M (RSL),

and M (SS) used to represent a memory notion to the changes in the automata

ESL, S, RSL, and SS, respectively, according to the passage of time expressed in

automaton Chronos.

Finally, this practical application of the SAN modeling brings up new opportu-

nities to the Stochastic Modeling area. Perhaps one of the most notable benefits
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of using stochastic modeling to depict a natural phenomenon is that statistics gen-

erated can help against major human error factors that may arise with classical

geological analysis. Anyway, this is our bet for continuing doing such multidisci-

plinary research.
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